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 Mini-Review Mini-Review

Leaf Senescence: Maximizing Return on Investment

Leaf senescence is a developmental process actively initiated as 
part of an age-dependent genetic program or in response to envi-
ronmental stress. Although this may ultimately lead to cellular 
apoptosis across the organ, it is in no way a simply unintended 
or unfortunate consequence. In fact, the process of senescence 
is highly regulated and dependent upon concurrent increases in 
both synthesis and activity of some proteins as well as degrada-
tion or inactivation of others. Precise regulation of senescence 
is crucial because in preparation for cellular death, the valuable 
nutrients and energy released by the breakdown of macromole-
cules during this process are reallocated to the rest of the plant for 
growth or storage.1,2 This senescence-based recycling of nutrients 
and energy that are invested in the production of leaves and the 
photosynthetic machinery within has been described as “altruis-
tic” and evolutionary advantageous process.3

This review focuses on the current understanding of the 
mechanisms behind the well-known cytokinin inhibition of 
senescence. The elucidation of the two-component cytokinin 
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The senescence delaying effect of cytokinin is well known, 
however, the details behind how this process occurs remain 
unclear. Efforts to improve understanding of this phenomenon 
have led to the identification in Arabidopsis of specific cytokinin 
signaling components through which senescence signal 
responses are regulated. These include the cytokinin receptor 
(AHK3), the type-B response regulator (ARR2) and the recently 
identified cytokinin response factor (CRF6). At the mechanistic 
end of this process, it was found that increased cell-wall 
invertase activity which occurs in response to cytokinin is 
both necessary and sufficient for the inhibition of senescence. 
Yet, a direct link between the signaling and mechanistic steps 
of a cytokinin regulated senescence process has yet to be 
demonstrated. This may be in part because the relationship 
between senescence and primary metabolism implied by the 
key role of cell-wall invertase is the subject of two apparently 
opposing bodies of evidence. Here we briefly summarize and 
propose a model in which cytokinin mediated changes in sink/
source relationships leads to delayed senescence which is 
consistent with existing evidence both for and against sugars 
as a trigger for developmental senescence.
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signaling (TCS) pathway in Arabidopsis has facilitated the iden-
tification of the initial signaling components which mediate 
senescence-specific responses; specifically the cytokinin receptor 
(AHK3) and the type-B response regulator (ARR2).4 Recently 
another transcription factor, cytokinin response factor 6 (CRF6) 
thought to act as a side branch of the canonical TCS pathway was 
shown to be involved in senescence delay.5 While at the other end 
of this process, increased cell wall invertase (CWINV) activity 
has been shown to be an integral part of the downstream response 
mechanism through which cytokinin delays leaf senescence.6 
Despite this knowledge of upstream signaling and downstream 
mechanistic parts of a cytokinin-regulated senescence process, 
these portions have not been connected and a unified pathway 
remains unresolved (Fig. 1).

Cytokinin: The Foliar Fountain of Youth

Richmond and Lang (1957) first showed that cytokinin treatment 
leads to greater retention of chlorophyll and protein in excised 
leaves of cocklebur plants (Xanthium pennsylvanicum).7 This 
cytokinin effect has since been shown in many other species, even 
resulting in re-greening of yellowing leaves.8 Experimentation 
has led to the understanding that cytokinin increases in longevity 
is specific to leaves and that it can be influenced by other factors 
such as light and sugars.9,10

Much of the evidence supporting the role of cytokinin as an 
endogenous negative regulator of senescence has come from stud-
ies which examined changes in cytokinin content and the expres-
sion of cytokinin metabolism genes during senescence. Work 
in numerous species has indicated a strong correlation between 
decreased leaf cytokinin content and the onset and progression of 
senescence.3,11 Cytokinin synthesized in roots is transported into 
leaves through the transpiration stream; it has been found that the 
amount of cytokinin in the xylem of Glycine max rapidly decrease 
at the onset of senescence.12 Similarly, a sorghum cultivar exhibit-
ing delayed leaf senescence had a greater abundance of cytokinin 
in its xylem sap as compared with a normally senescing cultivar.13 
Cytokinin in leaves may also be the product of local synthesis. 
Transcriptome analyses of Arabidopsis leaves demonstrate that 
expression of cytokinin biosynthetic genes greatly decreases dur-
ing senescence, while transcripts of cytokinin degrading enzymes 
become more abundant.14,15 This suggests that cytokinin may 
delay leaf senescence not only as a result of exogenous treatment, 
but as part of an endogenous developmental program. Although 
an antagonistic role of cytokinin in leaf senescence is strongly 
supported in these studies, many of them rely on correlations and 
do not clearly demonstrate a causal relationship.
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results are due to a cytokinin imposed shift in sink and source 
identities of organs.20

An elegant system was designed to resolve these confounding 
results (as well as concerns regarding the effects of expression-
inducing conditions): the IPT gene was expressed in tobacco 
plants under the promoter of SAG12 (Senescence Associated 
Gene12), such that the plants had increased cytokinin pro-
duction limited to leaves which had begun to senesce. This 
auto-regulatory loop specifically targeted cytokinin increases 
to senescing cells, yet prevented over-accumulation. The result 
was a striking delay of leaf senescence.21 The extraordinary leaf 
longevity exhibited by these plants remains among the most 
convincing lines of evidence for the negative regulation of leaf 
senescence by cytokinin. This proSAG:IPT system has since 
been implemented in a number of important crop species includ-
ing: lettuce, rice, ryegrass, tomato, alfalfa, cauliflower, wheat, 
cassava, broccoli and cotton; all of which demonstrated delayed 
leaf senescence.22-31

A Specific Subset of Cytokinin Signaling Slows 
Senescence

The two-component cytokinin signal (TCS) pathway is fairly 
well understood as a result of work done over the past 15 y. It 
functions as a multi-step phospho-relay involving hybrid his-
tidine kinase receptors (HKs) and downstream transcrip-
tion factors, such as the type-B response regulators (RRs) and 
cytokinin response factors (CRFs) that mediate the cytokinin 
signal.32,33 The first direct link between the TCS pathway and 
senescence regulation came about with the characterization of an 
Arabidopsis mutant with a delayed senescence phenotype, ore12, 
which turned out to be a gain of function allele of the cytoki-
nin receptor AHK3. Further investigation indicated that AHK3 
specifically mediates the senescence-delaying response in leaves 
in a manner partially dependent upon the phosphorylation/
activation of the type-B RR ARR2.4 It has since been shown 
that plants expressing a proteolytic-resistant version of ARR2 
exhibit delayed dark-induced leaf senescence.34 A similar phe-
notype was observed in plants overexpressing the CK inducible 
transcription factor CRF6; and crf6 mutants were found to have 
reduced sensitivity to the senescence delaying effects of cytoki-
nin.5 While CRFs (cytokinin response factors) have been shown 
to function as a side branch of the TCS, this is one of the first 
functional roles in a cytokinin regulated process directly linked 
to a CRF protein—the first involving senescence.35 Interestingly, 
the CRF6 protein has been shown to directly interact with type-
B ARR proteins.36 Although interaction with ARR2 was not 
tested, those which were examined (ARR1, ARR10 and ARR12) 
are closely related and function in a redundant manner.37 This 
suggests that CRF6 and ARR2 could potentially function in 
complex to regulate transcriptional response to cytokinin dur-
ing senescence, however further examination is required (Fig. 
1). Notably, AHK3, ARR2 and CRF6 are all expressed in leaf 
vascular tissues which, as will be addressed in subsequent sec-
tions, serve an important role in senescence and may be crucial 
in regulating this process.38-41

A new era of investigations in cytokinin physiology began 
with heterologous expression of the Agrobacterium tumfaciens iso-
pentenyl transferase (IPT) gene which is transferred into plant 
cells during infection by A. tumfaciens. The IPT enzyme cata-
lyzes the rate-limiting step of cytokinin biosynthesis in plants; 
ectopic IPT expression in a wide variety of plant species results 
in dramatic increases in endogenous cytokinin production.16,17 
Because constitutive expression using the CaMV 35S promoter 
severely limited regeneration of plants due to cytokinin inhibi-
tion of root organogenesis, tissue-specific or inducible promot-
ers allowing for targeted over-production of cytokinin have been 
employed to varying levels of success in many species as has been 
extensively reviewed.9,18

Given the senescence delaying effects of exogenous cytokinin 
treatment, it was expected that cytokinin overproducing plants 
would also display increased leaf longevity. However, actual find-
ings were mixed with some plants showing delayed senescence as 
expected, but many studies found no change or even accelerated 
leaf senescence.9,19 It has been suggested that these unexpected 

Figure 1. Model of an emerging pathway integrating current knowl-
edge of cytokinin regulation of senescence. In Arabidopsis, cytokinin 
perception by AHK leads to activation of ARR2 and induced expression 
CRF6. It is unclear whether ARR2 directly regulates CRF6 expression in 
this process. ARR2 and CRF6 proteins may also interact physically in 
the regulation of downstream genes. One such gene may be cell-wall 
invertase which has been shown in tobacco and tomato to be necessary 
for senescence inhibition.
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due to increased CWINV activity reported by Lara et al. (2004) 
because in that study increased steady-state levels of hexoses were 
not observed.6 The authors interpreted this as an indication of 
rapid subsequent metabolism of the glucose and fructose products.

The debate regarding this point referenced above has come 
about because in addition to the theory in which sugar accumula-
tion leads to senescence, a strong body of evidence suggests that 
sugar starvation initiates the onset of senescence.55 For example, 
the dark-induction of senescence in detached leaves is generally 
thought to result from starvation due to a lack of photosynthesis; 
a hypothesis supported by the finding that treatment with sugar 
can both delay dark-induced senescence (similar to cytokinin) as 
well as repress the expression of SAGs.56-59

In Arabidopsis, hexokinase1 (HXK1), in addition to its cata-
lytic function, serves as both a sensor of hexose levels and regula-
tor of gene expression.60 Mutants with impaired HXK1 function 
have reduced sensitivity to glucose and a delayed senescence phe-
notype, which has been interpreted as a deficiency of the sugar 
signal causing the delay.61 However, further experimental support 
of this interpretation may be necessary as it is based on pheno-
typic analysis of mutants lacking a key regulatory and metabolic 
enzyme. When interpreting the results from these experiments, 
it is crucial to consider that the metabolic relevance of sugars 
is greatly dependent upon their spatial distribution both among 
and within cells. For instance, sucrose in the phloem of the leaf 
would be unlikely to have the same metabolic fate as sucrose pres-
ent in the vacuole of a mesophyll cell, yet these differences cannot 
be determined in experiments making sugar measurements from 
a whole leaf extract. Considering these distinctions is important 
both when measuring sugar levels and in experiments involving 
sugar-feeding or supplementation.

Sink/Source Identity Theft

Regardless, both sugar accumulation and starvation appear to 
serve as triggers for senescence under certain conditions; yet 
to date neither condition has been irrefutably demonstrated to 
play such a role. This perhaps suggests that changes in carbon 
flux rather than steady-state levels of primary metabolites may 
stimulate the onset of senescence: a mechanism that could also 
explain the key role of CWINV. The co-induction of CWINV 
along with a plasma membrane hexose importer would pro-
vide a mechanism for increased carbon flux through a so-called 
“futile cycle.”62,63 Such a “futile cycle” would rely upon processes 
involved in apoplastic phloem loading (Fig. 2A). In apoplastic 
phloem loading sucrose produced in mesophyll cell cytoplasm is 
exported into the apoplastic space prior to uptake into specialized 
phloem companion cells by sucrose transporters.64 Until recently 
it was unclear whether sucrose export occurred at the site of syn-
thesis or if the sucrose was symplastically transported to phloem 
parenchyma and then exported in closer proximity to the com-
panion cells. The identification of the Arabidopsis sucrose efflux 
proteins involved in this process allowed their localization, spe-
cifically to phloem parenchyma adjacent to companion cells to 
be determined.65 This suggests that the efflux of sucrose directly 
precedes its uptake into the phloem.

Cell-Wall Invertase: Cytokinin Sweetens the Deal

The downstream mechanism of cytokinin delayed leaf senescence 
is not fully understood, though it is widely thought to involve the 
regulation of sink/source relation.20,42,43 The influence of cytoki-
nin upon sink/source relations is exerted in part by regulation of 
cell-wall invertase (CWINV) activity.

The CWINV enzyme is secreted and ionically bound to 
cell walls where it catalyzes the cleavage of sucrose into hexose 
monomers.44 Doing so allows sucrose unloaded from the phloem 
into the apoplasm of sink organs to be rapidly metabolized and 
taken up by adjacent cells which possess hexose but not sucrose 
transport proteins. Because sucrose diffuses passively through the 
phloem, the rate of its metabolism at the site of unloading is a 
major determinant of sink strength.45,46

A cytokinin-induced increase in invertase activity was first 
demonstrated in calli from Cichorium intybus.47 It was later shown 
that a similar increase specifically of CWINV in the cultured 
cells of Chenopodium rubrum and leaves of tomato (Solanum lyco-
persicum) was due to induced gene expression.48,49 Importantly, 
a coordinated increase was also observed in hexose transporter 
expression, which is required for uptake of the products of the 
invertase reaction into cells.48 A link between cytokinin induced 
CWINV and delayed leaf senescence was first observed in an 
analysis of tobacco proSAG12::IPT lines, where it was found 
that the long-lived leaves of these plants had unusually high lev-
els of CWINV activity. It was further demonstrated that plants 
expressing a proSAG12::CWINV transgene exhibited delayed 
leaf senescence, as did specific tissue regions in which an induc-
ible CWINV construct was expressed in a localized manner. 
Moreover when a CWINV inhibitor protein was expressed under 
a cytokinin inducible promoter, treatment with the hormone 
no longer resulted in delayed senescence.6 Similar results were 
obtained in a later study where activity of CWINV in tomato 
leaves was increased by the silencing of its inhibitor.46 Together 
these works demonstrate that the induced expression/activity of 
CWINV which occurs naturally in response to cytokinin is both 
necessary and sufficient to cause a delay in leaf senescence. This is 
a highly significant point as it provides both a physiological link 
between senescence regulation and primary metabolism as well 
as at least a partial mechanism by which senescence is delayed 
by cytokinin. Interestingly, it also emphasizes another aspect of 
senescence regulation which remains poorly understood and in 
some ways, controversial as discussed below.

Bitter-Sweet Senescence

The implications of CWINV activity in leaves negatively influ-
encing senescence are striking because an accumulation of sugars 
in leaves, particularly glucose and fructose (the products of the 
invertase reaction) coincides with the onset of senescence.50,51 It 
has even been suggested that this accumulation may serve as an 
underlying trigger of senescence.52,53 Toward this point the overex-
pression of a yeast invertase in the apoplasm of plants resulted in 
elevated hexose levels leading to premature senescence.54 However, 
this finding does not actually conflict with the delayed senescence 
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Figure 2. A futile cycle involving CWINV mimics a high rate of carbon export. (A) Loading of sucrose into phloem when photosynthesis rate is high 
involves pumping large amounts of sucrose into the apoplasm. From the apoplasm it is taken up by companion cells via sucrose symporters. (B) When 
photosynthesis rate is decreased, less sucrose is available to be pumped into the apoplasm. (C) Cytokinin stimulation of a futile cycle of sucrose export, 
hydrolyses, uptake and re-synthesis could maintain high rates of sucrose efflux at the expense of long distance transport.
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part from the repression of photosynthetic genes.70,71 One known 
mechanism by which this may occur is through the accumula-
tion of starch within chloroplasts which inhibits efficiency of the 
thylakoid-bound photosystems.72

It is difficult to interpret experiments where longevity is 
enhanced in detached leaves supplemented with sugar in terms 
of sink/source relationships because similar results are not found 
in intact plants. However, findings appear to suggest that the 
two seemingly incongruent lines of evidence regarding sugar and 
senescence actually indicate that it is the loss of a relatively strong 
source identity which triggers leaf senescence.42,73 Furthermore, 
that in plants with apoplastic phloem loading it is the rate of 
sucrose efflux out of phloem parenchyma which provides a sink/
source identity. Unfortunately this model may prove difficult to 
directly test as it is likely to require: (1) the ability to accurately 
determine changes in sub-cellular (or extracellular) concentra-
tions of sugars; (2) manipulation or misexpression of enzymes 
involved in indispensable metabolic processes; and (3) a more 
complete understanding of the role of sugars and primary metab-
olism in signal transduction.

Concluding Remarks

Elucidation of the mechanism by which cytokinin enhances 
leaf longevity is likely to have a significant impact on the basic 
understanding of numerous areas of research including hor-
mone signal transduction, regulatory mechanisms of primary 
metabolism and the aging processes. Moreover, novel con-
nections among these diverse areas are likely to emerge as the 
pathway that links the perception of cytokinin to CWINV 
activity and the resulting changes in carbon allocation is fur-
ther elucidated.
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Increased CWINV activity is likely to disrupt apoplastic 
phloem loading through the hydrolysis of effluxed sucrose (Fig. 
2B and C). The abundant hexose monomers resulting from apo-
plastic sucrose cleavage could then be taken back into cytoplasm 
of parenchyma cells via the co-induced high-affinity hexose 
transporters. Hexoses that are then phosphorylated by cytosolic 
hexokinase (as required for subsequent metabolism) result in a 
high intracellular concentration of glucose-6-phosphate which 
in turn enhances the activity of sucrose-phosphate synthase.66 
This ultimately results in the regeneration of cytoplasmic sucrose 
which would again be transported into the apoplasm, generating 
a “futile cycle” of both the compartmentalization and molecular 
form of sugars (Fig. 2C). The continuous sucrose efflux affected 
by this cycle partially mimics conditions in the phloem paren-
chyma similar to those associated with high rates of phloem 
loading for carbon export that are characteristic of productive 
source leaves. This cycle could therefore provide even a poorly 
productive leaf with an artificially strong source identity despite 
a reduced amount of sugar actually being exported. Importantly 
at least one key enzyme in this cycle that is not directly induced 
or activated by cytokinin (sucrose-phosphate synthase) would be 
activated as a result of the preceding steps of the cycle (increased 
glucose-6-phosphate).

It is noteworthy that accelerated senescence has been reported 
in experiments where whole plants are supplemented with sugar, 
which may be a consequence of changing sink/source relation-
ships in the opposite direction. For instance, a plant fed glucose 
through its growth medium would have an abundance of sugars 
available to its roots, which would result in a decreased amount 
of sugar unloaded from the phloem of these sink tissues. This 
would cause a reduced phloem turgor differential between source 
leaves and sink roots and inhibit bulk flow and diminished sugar 
export from source leaves. As a result, the phloem parenchyma of 
such leaves would experience decreased sucrose efflux and could 
thereby acquire a “weak source” identity and as such become can-
didates for senescence.

Sink regulation of source tissue identity has been extensively 
described elsewhere including the increases in sink strength dur-
ing fruit development and root nodulation that are correlated 
with elevated photosynthetic rates.67-69 The inverse effect has 
also been found, where restricting carbon export from leaves 
(mimicking a lack of a strong sink) reduces photosynthesis in 
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